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Abstract. When the fixed-nuclei (FN) approximation is
applied to the calculation of electron scattering from a
polar molecule, the resulting cross section diverges in the
forward direction of scattering. This is due to the long-
range nature of the interaction between the electron and
the molecular dipole. To avoid this difficulty, a hybrid
method is proposed for the calculation of the scattering
amplitude. This method is based on the FN approxima-
tion for a close collision and the Born approximation
for a distant collision. The present paper describes the
detailed formulation of the method for practical appli-
cations. Furthermore the present approach is extended
to other long-range interactions (due to quadrupole
moment and/or polarization effect) and to a dipole-
allowed vibrational excitation. In these cases, while no
divergence occurs, it is often difficult to confirm the
convergence of the partial-wave expansion. With the
employment of the present approach, it is much easier to
confirm the convergence and hence to obtain reliable
cross sections. The formulas are given for diatomic
molecules as well as for polyatomic ones.

Key words: Electron-molecule collision — Rotational
transition — Vibrational excitation — Fixed-nuclei
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Introduction

One of the specific features of electron-molecule scatter-
ing, in contrast to an electron scattering by an atom in its
S state, is the presence of electric multipole moments of
the molecule. The electric moment exerts a long-range,
anisotropic force on the incident electron. Long-range
forces are very important in low-energy collisions. In
particular an electric dipole moment leads to a very large
cross section for an electron scattering from a polar
molecule. Electron-polar molecule collisions are of great
practical importance and have been extensively studied
both experimentally and theoretically [1, 2].

Another feature of electron-molecule collisions is the
role of the nuclear degrees of freedom of the molecule.
The nuclear motion increases the number of channels to
be considered. To make the calculation more tractable,
use is often made of the fixed nuclei (FN) approxima-
tion, in which the nuclear coordinates are held fixed
during the collision [3]. Since the nuclear motion (i.e.,
molecular rotation and vibration) is relatively slow
compared with the speed of the colliding electron, this
approximation normally holds, unless the collision en-
ergy is extremely low or the collision time is particularly
long due to long-range forces.

Most of the theoretical studies of electron-molecule
collisions, particularly for polyatomic molecules, have
employed the FN approximation. When we apply the
FN approximation to the scattering of electrons from a
polar molecule, however, the differential cross section
(DCS) diverges in the forward scattering direction. This
is due to the fact that the electron-dipole interaction
decays very slowly with increasing distance. Because of
this divergence, we cannot calculate the integral cross
section for an electron-polar molecule collision in the
FN approximation.

To avoid this divergence problem but still take ad-
vantage of the simplicity of the FN approximation, sev-
eral hybrid approaches have been proposed. They usually
divide the partial wave expansion into two parts. For
lower partial waves, the main contribution comes from
the electron interactions at distances close to the target.
There the nuclear motion of the molecule is less effective
in determining the electron motion, so that the FN ap-
proximation can be applied safely. On the other hand the
higher partial waves are mainly determined by the in-
teractions at distances far from the target. In this case, we
have to take into account the nuclear motion correctly.
The interaction at a large distance from the target is
normally so weak that the first order perturbation (the
Born) approximation can be used. Thus combining the
Born formula for a distant collision with the FN ap-
proximation for a close one, we can derive an approxi-
mate formula for the cross section calculation of polar
molecules without encountering any divergence problem.
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On the basis of this philosophy Norcross and Pa-
dial developed an approximate method called MEAN
[4]. In a similar manner Rescigno and others [5] pro-
posed another approach that is based on the direct
evaluation of the squared modulus of the scattering
amplitude, for which the hybrid procedure is taken.
Recently the present author derived a compact form
of the cross section formula along the latter approach
[6, 7]. It is more useful for practical applications and
can be extended to various problems. The present
paper gives the details of the method and shows its
advantages over the others.

The present Born-closure method can easily be
extended to long-range interactions other than the
electron interaction with a permanent dipole. For in-
stance, an electron interaction with a molecular
quadrupole moment or with an induced dipole in the
target also has long range. These interactions do not
cause divergence of the cross section, but the conver-
gence of the partial wave expansion is sometimes so
slow that it is difficult to confirm. Another case is
dipole-allowed vibrational transition. Since the vibra-
tional motion is not necessarily slow compared with
the electron speed, use is often made of the fixed-
nuclear-orientation (FNO) approximation. In this
approximation, the orientation of the molecule is fixed
during the collision, but the vibrational motion is
considered correctly. In the case of a dipole-allowed
transition, the interaction responsible for the transition
decays slowly with the electron-molecule distance. In
this case the present Born-closure approach is also
useful to obtain converged cross sections.

In the main part of the present paper, an electron
collision with a diatomic molecule is considered. First a
general outline of the formulation is described for ro-
tational transitions. A DCS formula for rotational
transitions is then derived on the basis of a direct eval-
uation of the squared scattering amplitude. The Born
closure method is applied to the scattering amplitude.
The formulation here is then applied to the quadrupole
and/or induced-dipole interaction. Finally, vibrational
transitions are considered followed by concluding re-
marks. The Born scattering amplitude and related
quantities are presented in Appendix A. The formulas in
the present paper can be extended to electron scattering
from a polyatomic molecule. For the readers’ conve-
nience, formulas for a polyatomic molecule are
presented in Appendix B.

Rotational cross section in the FN approximation

Here we apply the FN approximation to the problem
of an electron scattering from a (polar) diatomic
molecule. Furthermore only the rotational motion
is considered for the nuclear degrees of freedom of
the molecule. (Vibrational motion is considered
later.) Atomic units are used throughout the present
paper.

First we solve the scattering equation in the body-
fixed frame (BF) of the coordinates. In this frame, the z
axis is taken along the molecular axis, or more precisely

along the direction of the molecular dipole. The scat-
tering amplitude obtained in the FNN approximation is
given by [8]
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Here ¢ (/) is the initial (final) orbital angular
momentum quantum number of the electron and k
is the wave number of the colliding electron. In
the FN approximation, the rotational energy is
ignored with respect to the electron kinetic energy.
Since the molecule is symmetric about the z axis, the
z-component of the angular momentum (i.e., A) is
conserved during the collision. The quantities 4/, and
k},, denote the directions of the incident and outgomg
electrons in the BF, respectively. The transition matrix
element 7)) is defined through the relation

S=1-T, (2)

where S is the scattering matrix obtained in the BF
scheme.

We transform the coordinate system into the labo-
ratory-fixed frame (LF), where the z axis is taken along
the direction of the incident electron. The scattering
amplitude (Eq. 1) is transformed into
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Here the directions of the outgoing electron and the
molecular axis in ﬂ’/le LF are denoted by kow and R,

J
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The 3-j symbols are defined elsewhere [9]. For the sake of
clarity, we rewrite the scattering amplitude (Eq. 3) in the

form
=220 (4)

respectively, and etc. are the 3-j symbols.
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In Eq. (5) we have introduced two quantities, a;, and
TM/ They are defined by
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The quantity j represents the angular momentum
transfer during the collision.

In the FN approximation, the scattering amplitude
for the rotational transition is evaluated with the for-
mula [3]

1N o — my) = [ R, (R) N
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where jo (j;) is the rotational quantum number of the
initial (final) state and my, (m;) denotes the respective
sublevel. The DCS for the rotational transition is now
obtained by
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With the use of Egs. (8) and (3), and taking an
integration over the molecular orientation, we have the
cross section in the form
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In this equation, P; is a Legendre polynomial, 0 is the
scattering angle in the LF frame, and the coefficient
A,(j) is given by
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J } is the 6-j symbol, which is defined
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elsewhere [9].
When we define the vibrationally elastic cross section

by
2"
it is simply obtained from Eq. (10) as
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It should be noted that the cross section for the
vibrationally elastic process, therefore, does not depend
on the initial state (jy) of the molecular rotation. This is
one of the specific features of the FN approximation.

Now we consider the convergence of the partial wave
expansion. In principle, the summation over / (and ¢) in
Eq. (12) should be taken to infinity. (Note that once /
and A are fixed the summation over /’ is limited to a
finite range.) If the interaction between the electron and
the molecule is not so long-ranged as the dipole one, the
convergence over / is reasonably rapid. In such a case,
we can safely truncate the sum at a finite value of / (say,
¢ = /max)- Then the summation over 1 in Eq. (11) needs
to be taken only over the range / < 2/... It is well
known, however, that, in the FN approximation, the
partial wave expansion does not converge for a dipole
interaction [1, 2]. To solve this problem, several methods
have been proposed.

If we calculate the rotational cross section without
resorting to the FIN approximation, the cross section can
be expressed in the form [3]

o0
qljo — j1) = >_ A:(jo — ji)Pi(cos 0) . (15)

A
Here the coefficient 4, is a quantity similar to 4, in
Eq. (11), but evaluated without the FN approximation.
Now we apply the Born approximation to the same
collision problem, but take into account only the long-
range part of the interaction. Since the distant collision
is governed by the electric multipole moment of the
molecule, we actually apply the Born approximation to
the interaction between the electron and the multipoles
of the molecule. (Hereafter we call that the Born-
multipole approximation.) Then we have

ZA

where the index B(M) indicates the quantity evaluated
in the Born-multipole approximation. With the use of
Egs. (15) and (16), we have an identity

M>Uo—>11 ]0-’]1) i (cos 0) (16)

q(jo — j1) = *™(jo — jr)
+Z[Ai(/o —j1)—4
7

X Py(cos b)) . (17)

When 4 is large, the contribution of higher partial waves
dominates. For the higher partial waves, the scattering
is mainly determined by the long-range part of the
interaction and the Born-multipole approximation can
be used. Thus, as the A increases, the coeflicient A4;
becomes closer to the Born multlpole value AB(M)
Accordingly the summation over 4 in Eq. (17) can be
truncated at a finite value of 1 (say, A= Anax)-
Furthermore, since only the short-range part of the
interaction contrlbutes to the difference 4, — A?( ), it
can be calculated in the FN approximation. Then we
have an approximate formula to evaluate the rotational
cross section without any divergence problem:

P Go — )]
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This has been proposed by Norcross and Padial [4] and
called the MEAN (Multipole Extracted Adiabatic
Nuclei) method. The coefficient 45N is now obtained
with 4, in Eq. (12) in such a way that

. . N\ 2
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The coefficient AE(M)’FN in Eq. (18) is calculated with the
same formula as Eq. (19), but by replacing the transition
matrix 7 with the corresponding quantity in the Born-
multipole approximation.

For a polar molecule, the dipole moment is dominant
in the long-range part of the interaction. Usually we
consider only the dipole interaction in the Born-multi-
pole approximation. In that case the rotational cross
section in the Born approximation is given by [1]

gBUiole) (0 7 19)
:il} J> ki 1 .

3 D2j0+1k0k§+k%—2kok1 cos 0 it -
(20)

Here up is the dipole moment, ky (k;) is the wave
number of the electron before (after) the collision, and
j~ is the larger of (jy, j;). From the selection rule of the
first-order perturbation theory, only the transition
Jjo = Jj1 =Jjo £ 1 is allowed in the Born-dipole approx-
imation.

As is described above, the scattering at a high partial
wave (say, for /> /g) can be treated by the Born-
multipole approximation. That is, we have a relation

(1)

The quantity on the right side of Eq. (21) is the reduced
T matrix element evaluated in the Born-multipole
approximation (see Appendix A).

As can be seen in Eq. (12), 4, is a quadratic form of
the transition matrix. Each 4, has a contribution of an
interference term between 7 with large / and those with
small /. The term with large / can be replaced with the
Born value, but those with small / cannot. Thus the
interference terms in 4; cannot simply be canceled with
the corresponding terms in Alf . As the 4 increases, the
contribution of the interference terms relatively de-
creases and hence A4; should become gradually closer to
the corresponding Born value. However, if the summa-
tion over A is truncated too early, the resulting cross
section has a nonphysical undulation in the angular
distribution and sometimes even a negative value. Thus
great care should be taken about where we truncate the
summation over 4 in Eq. (18).

)B<M> for >0y .

7 = (T

The Born closure method for the scattering amplitude

There is another formula of the DCS for the rotational
transition in the electron-molecule collision. It is based
on the direct evaluation of the square modulus of the
scattering amplitude. As is shown in Egs. (4) and (5),
the scattering amplitude in the FN approximation is of
the form

ZZZZ% ()T, Y, —u(R)

Substituting this into Eq. (8) and integrating it over the
molecular orientation, we have the scattering amplitude
for the rotational transition

(22)
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Inserting this into Eq. (9) and taking the summation over
the rotational sublevels, we obtain the DCS in the form

ol—

(23)
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It is not difficult to show that Eq. (11) can be derived
from Eq. (25) or vice versa.

To avoid the direct evaluation of the infinite sum
over the partial waves in Eq. (25), we introduce the
Born closure method. As in the previous section, we
apply the Born approximation to the electron-multipole
interaction and have the scattering amplitude in the

(25)

form
=D > (26)
¢ v
Then we introduce an identity relation
o FN+ZZ AN = M (27)

With the use of the relation at Eq. (5) and the
corresponding formula in the Born approximation (see
Appendix A), this can be written in the form
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(28)



The term B on the right-hand side of Eq. (28) is given by
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where 1/(K) is an integral defined by Eq. (A.4) in
Appendix A.

In exactly the same way as in the derivation of
Eq. (25) from Eq. (22), the following formula is derived
from Eq. (28):

) 1
]*IZ

BM(K) =

! (29)
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With the use of the relation at Eq. (21), we can safely
truncate the summation over 7 at / = /g. That is, we
have an approximate formula of the DCS in the form

"
3 0+ 3 a7

p=—j ¢
(31)

When we put Eq. (31) into Eq. (24), we obtain an
approximate formula of the cross section for the rota-
tional transition. This formula has only one parameter
/g. It can be clearly determined from the relation at
Eq. (21). The formula at Eq. (31) is in contrast to the
MEAN formula (Eq. 18), in which it is not a simple
matter to determine the parameter A,,. In this sense,
the present formula (Eq. 31) is more reliable to calcu-
late the DCS. The idea of using the Born closure for
the scattering amplitude, instead of the MEAN meth-
od, was first proposed by Fliflet and McKoy [5] in their
calculation of the (dipole allowed) electronic transition
of a hydrogen molecule in the collision with electrons.
Later Rescigno and his colleagues [5] showed clearly its
advantage over the MEAN method. In their treatment,
however, the integration over the molecular orientation
was taken numerically and hence no analytic form of
the cross section with the Born closure was presented
explicitly. They stated in their paper that the numerical
integration procedure is preferred because it is easier to
extend to polyatomic molecules. This is not the case
actually. It is not difficult to extend the present formula
to any polyatomic molecule (see Appendix B).

As in the case of MEAN, the formula at Eq. (31) can
be applied to any (long-ranged) interaction between the
electron and the molecule. In the following, the Born
closure method is applied to the dipole interaction.
(Other long-range interactions are considered in the next
section.) In the Born approximation, the dipole moment
contributes only to the term with j=1 (see Appen-
dix A). We adopt, therefore, the term with j =1 from
the approximate formula at Eq. (31) and others from the
correct formula (Eq. 25). For the latter, the summation
over / can be truncated at a finite value. In the multipole
expansion of the interaction potential (see Eq. A.2), the
dipole term of the interaction has the form

2
g ()

dipol _Hp
Vvl 1pole _ r2 ) (32)
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The Born amplitude (Eq. 29) with j = 1 becomes
_ 8t 1 _, N
B" = TZMDEYL_#(K) :

A spherical harmonic function can be separated into two
parts in such a way that

Yo (0, ) = Cin(0) explime) (34)

With the use of this, the terms B and « in Eq. (31) are
rewritten as

(33)

_. 8m. 1 .
B/ :?lﬂDECI,—u(eK)eXpO:u(bK) (35)
and
2, |
ay =B+ D
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y ( )c@u(m expliph) | (36)
w0 —pu

Considering the relation between the momentum trans-
fer vector and the direction of the scattered electron, we
can put ¢x to be equal to ¢ (see Appendix A). Then we
have

1

=3

u=—1

8n 1 o 2 4y 1
3 o Cron(0k) + D =1 B+ D

T

0 01 - - \B
(0o L )ento[rh - @]
Now the cross section ¢*PP depends only on the
scattering angle 0 (see Appendix A for the relation
between 0 and 0Oy). The Born transition matrix element
for the dipole interaction is given in Eq. (A.17), the letter
M in the superfix being simply omitted here):

(37)

~1\B 4. WA
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(38)
with
sin [—”(52_ /f’)]
I, (kk) = 39
o
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Since the momentum transfer K vanishes at 0 = 0, the
first term in the right-side of Eq. (37) diverges there.
Similarly to the MEAN method, we can modify the
formula at Eq. (37) by introducing the Born scattering
amplitude for a rotating dipole. Usually the difference
between the formulas of the fixed-dipole and the
rotating-dipole appears only in the close vicinity of the
forward direction. If we are not interested in the forward
scattering, we can use the formula at Eq. (37) as it is.
The DCS for the forward scattering can be evaluated
with sufficient accuracy by using the Born formula for
the rotating dipole (i.e., Eq. 20).
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The Born closure formula for the quadrupole
and/or induced-dipole interaction

Equation (31) in the previous section can be used for any
kind of long-ranged interaction. Except for the dipole
one, the resulting cross section converges with respect to
the partial wave expansion. In some cases, however, the
convergence may be very slow. In such cases, the Born
closure approximation (Eq. 31) is helpful. For the
convenience of practical applications, detailed formulas
for the quadrupole and/or induced-dipole interaction are
presented below.

The electron interaction with a quadrupole moment
(denoted by ©) of the molecule contributes to the term
with n=2 in the multipole expansion (Eq. A.2). If we
take into account the polarization of the target (i.e., the
induced dipole), this provides a second contribution to
the n=2 term of the potential. Adding both contribu-
tions, one obtains

. e
quadrupole
V2 - 173 - ﬁ s (4())

where o represents the anisotropic part of the molecular
polarizability. From Eq. (31), an approximate form of
the cross section term with j = 2 is given by

1 & =
=5 2 |5 ﬂmzzam (e0)[72, - (73)"]

7 (41)

2

_ 81 . .
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The corresponding transition matrix elements in the
Born approximation are obtained as (see Appendix A)

(42)

N (0
(13)"= - Srontze+ e+ (o o)
—iia’k[(ze+1)(ze’+1>ﬁ<i g ﬁ)];@(kk).
(43)

The integrals 7, (kk) and I}, (kk) are evaluated analyti-
cally with the use of the formula at Eq. (A.15) in
Appendix A.

The isotropic part of the polarization interaction
contributes to the multipole term with n = 0:

o
24
where o is the isotropic part of the polarizability. The
corresponding cross section can be calculated by

‘g
(K) + 2 an(e0)[ 75— (78)"]
[

e = - (44)

2
m(0) =4

(45)
with

By = 2y/mall(K) . (46)

The transition matrix element in the Born approxima-
tion is given by

. £ ¢ 0
(T[[r) = —210(k(2€+ 1) (0 0 0> M’( )5“/ . (47)
Here we have introduced the integrals
II(K) = / dr r2jo(Kr) (48)
0
and
1, (k) = / dr fzjg(kr)jg« (kr) . (49)
0

When we evaluate the integral at Eq. (48), the lower
limit (i.e., » = 0) of the integral gives rise to a problem.
However, since the integral at Eq. (49) with / =/" =0
has exactly the same problem, taking the difference of
the two terms in Eq. (45) solves the difficulty.

The Born closure formula for the vibrational transition
in the FNO approximation

In this section, vibrational excitation of a diatomic
molecule is considered. Here the rotational motion is
treated in the sudden approximation, but the vibrational
motion is considered correctly. In other words, use is
made of the fixed-nuclear orientation (FNO) approxi-
mation [6]. In this sense, the following formulation is a
simple extension of the (vibrationally) elastic case in the
previous sections to the inelastic case.

In the FNO approximation, the scattering amplitude
for the vibrational transition ng — n; is given by

ST (ng — my) ZZ fir®© (50)
and
FIZ’NO Zzaﬂl ff |k0k1 nofnll’ (]Ae) . (51)

Here we consider the vibrationally inelastic problem so
that ko and k; are the electron wave numbers before and
after the collision. Now the coefficient ¢ and the reduced
transition matrix element 77 > respectively, have the

forms ot
2n 1
an(tl ki) = =i 27+ DR+ D
AN | R

X < L 0 _'u) Yé”y (kout> (52)
and
5 A
T;foz,n,z' = Z(_I)A<A _A (J)>Tn/:é,nly : (53)
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The cross section for vibrational excitation is obtained
as

qFNO (ng — my) ZCI ny — nj \J (54)
and

2
61(710 — N |] Z Z Z a]ﬂ fé |k0k1 n[)é n

- (55)

Here we have taken a sum over the final rotational states
and an average over the initial rotational states.

In the vibrationally inelastic problem, the interaction
matrix element with respect to the initial and the final
vibrational states is the point of concern. If the matrix
element decays slowly with the distance, the convergence
of the partial wave expansion is very slow. In particular
if the vibrational transition considered is dipole allowed,
we may have a difficulty of slow convergence. (It should
be noted that no divergence occurs in the inelastic pro-
cess.) In such a case, the Born closure approximation
is useful. The approximate formula for the vibrational
transition caused by the dipole interaction is given in the
form [6]

1

i 1
P70 — ) = Y

p=-—1

I
+ 3 (' |koky)
[

B,"(K)

2
_ . B
X {T;}()z,n,w - (T,Jozz.,m/') } (56)
with
—u 87 . 1, N
B, :?’<’ll|#D|’10>EYl,7u(K) . (57)

In this equation, the matrix element of the dipole
moment with respect to the initial and final vibrational
states is denoted by {n;|uplng). It should be noted that
the momentum transfer for the inelastic case is given by

=k + ki — 2koky cos 0 (58)

Considering the dipole interaction, the Born formula for
the transition matrix element is of the form

(Theme)” = = 3ikemlipbo)[(26-+ 1)(2¢ + 1)

¢ 01
x(o 0 O)I}[,(kokl). (59)

The integral 1), (koki) can be evaluated with the formula
at Eq. (A.15) in Appendix A.

l—

Conclusion

One of the specific features of electron-molecule colli-
sions is the long-range nature of the interaction. Since
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the interaction decays slowly with the electron-molecule
distance, the partial-wave expansion often converges
very slowly. The electron-dipole interaction has the
longest range so that the worst case is electron scattering
from a polar molecule. In particular, if we apply the
fixed-nuclei approximation to the electron-polar mole-
cule collision, the resulting cross section diverges in the
forward scattering direction. To remedy these difficulties
and accelerate the convergence of the partial-wave
expansion, a Born-closure method has been proposed
for the calculation of scattering amplitude.

In the present paper, the Born-closure method for the
scattering amplitude is described in detail. For the ap-
plication to low-energy electron-molecule collisions, de-
tailed formulations are given for the rotational or
vibrational excitation of molecules. After a general for-
mula is derived for any kind of long-range interaction,
more detailed formulas are presented for the interactions
between the electron and static dipole and quadrupole
moments and also an induced-dipole moment.

Practical applications of the present formulas have
been attempted so far in two cases: rotational excitation
of HCI [7] and excitation of dipole-allowed mode of
vibration of CO, [6]. The results are satisfactory in
both cases.

Appendix A. Scattering amplitude in the Born
approximation

In the first-order perturbation theory, the scattering
amplitude is evaluated with the formula

fB:f%/dr exp(iK-r)V ,

where V' is the interaction potential and K is the
momentum transfer during the collision. Since the
molecule is axi-symmetric, the interaction potential can
be expanded as

V=> V(P (R

With the use of this and the partial wave expansion of
exp (iK - r), the scattering amplitude (in the LF) can be
calculated as

7=

(A.1)

(A.2)

) Y5 (K) Yom, (R)V(K) |

(A.3)

2n+1

where

= /ODC dr rzj,,(Kr) Va(r) . (A4)

Here j, is the spherical Bessel function. Denoting the
momenta of the incident and the scattered electrons by &k
and k', respectively, we have the relation exp(iK - r)
—exp(ik r) exp(-ik’ - r). With the partial wave expan-
sion of each of exp(zk r) and exp(-ik” - r), another form
of /8 is obtained in such a way that
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ZZZZ;%‘ 2+ 120+ 1)

¢ ¢ n . 4iN k'
X ( )Yé’mﬂ (koul> 0——-
m, 0 —m, 2n+1

< [20+ )20 + 1))

7 ¢ n L ,
X (0 0 0>Ynﬁ_mn(R)uw(kk). (A.5)
with
v} (k') :/ dr Pj(kr)jo (Kr)V,(r) . (A.6)
0

The direction of the momentum transfer, denoted by
Ok, ¢x), is related to the directions of the scattered
electron as

k/
- _ = A.
coslg = e Kcos@ (A7)
/
sinOx = —EsinH (A.8)
bx =9 (A.9)
and
K* = k% 4k — 2kk' cos0 . (A.10)

Now we apply the Born approximation to the interac-
tion of the electron with the electric multipole moments
of the molecule. The multipole term of the interaction
potential has the form

M,
pnt+l 7

ACES

(A.11)

where the constant M, is related to the multipole
moment of the molecule. The integrals over r in the
Egs. (A.4) and (A.6) can now be evaluated through the
quantities

v"(K) = —M,I"(K) (A.12)

(kK'Y = —M, 1}, (kk") (A.13)

with

I"(K) :/ dr 17", (Kr) (A.14)
0

1, (kK" :/ dr =" (kr)je (K'r) (A.15)

Furthermore, we employ the FN approximation. Then
we have the same formulas as above, but with the
relation k=k" and K>=2k*(1—os #). Thus the Born
scattering amplitude for the electron-multipole interac-
tion, evaluated in the FN approximation, is of the form

~ - «B(M N
LN = STS @) (@)" B - (A6)
Joonu

Here the coefficient a;,(//") is the same as in Eq. (6) in
the text and the corresponding transition matrix element
is given by

o=

= sz

CrogN .,
1, (kk

It should be noted that only the multipole moment M; of
the molecule contributes to the transition matrix element
with the angular momentum transfer j.

)P 4."1 20+ 1)(2¢ + 1)]

(A.17)

Appendix B. The Born-closure formulas
for polyatomic (polar) molecules

Here an electron collision with polyatomic molecules
is considered in the fixed-nuclear orientation (FNO)
approximation to give a cross section for vibrational
excitation [10]. Cross sections for a vibrationally
elastic process can be easily derived in the same
manner as in this Appendix. First we solve the
scattering equation in the BF scheme, where the z-
axis is taken along the dipole moment of the molecule.
When we ignore the rotational motion of the
molecule, the total wave function of the (electron +
molecule) system is expressed as

Y= 1 ()X (%) -

Z Pt (7) (B.1)

n' oy

Here y,(&) is the vibrational wave function, for which the
normal coordinates and the vibrational quantum num-
bers are collectively denoted by ¢ and n, respectively.
The angular part of the electron motion is expressed in
terms of a symmetry-adapted angular basis function

Z b[#/ YZW A/

The radial part of the wave function of the colliding
electron satisfies a set of coupled equations

X! () (B.2)

& O+
R L
=2 Z (n’é'\/|V|n”€”v”>un~gnv~(r) , (B3)
n/le//v/l

where the interaction matrix elements are defined by

< /6/ /|V| Nf” // /df /dr X,, Xe’/&,))*
X Vo (E)X0 (7).

In Eq. (B.3), k,, is the wave number of the scattered
electron in the channel (n’, /’, v). From the solution of
Eq. (B.3), we derive the scattering matrix (in the BF) in a
standard manner.

With the use of the scattering matrix, the scattering
amplitude is obtained as

(B.4)
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where the transition matrix is defined by Eq. (2).
Transforming the scattering amplitude in the BF into
that in the LF, we finally have the form

FNO (e ) ZZ ZIZ/NO (B.6)

with ’

i ZZZAM (00 Veok) T oD p ()
(B.7)

where o denotes the molecular orientation in the LF.
Here the coefficient 4 and the reduced form of the
transition matrix element are given by

A (00 Koy ) :,/ 20+ 127+ 1)

!
g ! )Ym(kl) (B.8)
and
14 Jj >
WW’ uZqu (#z —pe Ay
<Zzbl’uﬂT:|l)Zl’:’ E;q) (B9>

The differential cross section for the vibrational transi-
tion is derived with the use of the formula

1 2
qFNO(no—>n1):@/da)|fFNo(n0—>n1)|

By using Eq. (B.7) and after the integration over the
molecular orientation, the DCS is obtained in the form

g™ (ng — m) 2222]+1

(B.10)

o (00 Kok ) T2

JA;
noé',nllf’

(B.11)
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If the molecule is diatomic, the formula at Eq. (B.11) is
easily shown to reduce to the corresponding one,
Eq. (54) with Eq. (55). When we apply the Born closure
method for the dipole interaction, we have an approx-
imate formula of the form

4 (ng — m) ZZ \/7 "(K)On, 0
+ ZZAlm £€/|k0k1 |: nlo/;ln o <Tnlo/27]nl€/) B:|

2

2

X Zzzzj 1 ZZAjm M/Vfokl) nofm/’

J#lL m

(B.12)

Here By™ is the quantity defined in Eq. (57) and the
Born transition matrix element for the dipole interaction
is given by

. B 4
(T ) == Siklmlplmo) (26 + 1) + 1]

0oy
X 00 0 IM/(kokl)aAho

l—

(B.13)
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